
Application of Semi-supervised Learning
to Evaluative Expression Classification

Yasuhiro Suzuki1,�, Hiroya Takamura2, and Manabu Okumura2

1 Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology,

4259 Nagatsuta Midori-ku Yokohama, Japan, 226-8503
yasu@lr.pi.titech.ac.jp

2 Precision and Intelligence Laboratory, Tokyo Institute of Technology,
4259 Nagatsuta Midori-ku Yokohama, Japan, 226-8503

{takamura, oku}@pi.titech.ac.jp

Abstract. We propose to use semi-supervised learning methods to clas-
sify evaluative expressions, that is, tuples of subjects, their attributes,
and evaluative words, that indicate either favorable or unfavorable opin-
ions towards a specific subject. Due to its characteristics, the semi-
supervised method that we use can classify evaluative expressions in a
corpus by their polarities. This can be accomplished starting from a very
small set of seed training examples and using contextual information in
the sentences to which the expressions belong. Our experimental results
with actual Weblog data show that this bootstrapping approach can im-
prove the accuracy of methods for classifying favorable and unfavorable
opinions.

1 Introduction

An increasing amount of work has been devoted to investigating methods of
detecting favorable or unfavorable opinions towards specific subjects (e.g., com-
panies and their products) within online documents such as Weblogs (blogs),
messages in a chat room and on bulletin board (BBS) [1, 2, 7, 9, 11, 12, 18]. Areas
of application for such an analysis are numerous and varied, ranging from analy-
sis of public opinion, customer feedback, and marketing analysis to detection
of unfavorable rumors for risk management. The analyses are potentially useful
tools for the commercial activities of both companies and individual consumers
who want to know the opinions scattered on the World Wide Web (WWW).

To analyze a huge amount of favorable or unfavorable opinions, we need to
automatically detect evaluative expressions in text.

Evaluative expressions are not mere words that indicate unique (favorable
or unfavorable) polarity in themselves (such as the adjectives ‘beautiful’ and
‘bad’), but rather they are tuples of the subject to be evaluated, an attribute,
and an evaluative word. Tuples are necessary because the evaluative polarity of

� Yasuhiro Suzuki currently works at Fujitsu.

A. Gelbukh (Ed.): CICLing 2006, LNCS 3878, pp. 502–513, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Application of Semi-supervised Learning 503

an individual word is often ambiguous and is determined context-dependently.
In the following example 1, which is rather artificial due to direct translation,
the first sentence is positive and the second sentence is negative, although both
have the same word “high”.

– The storage capacity of this HDD is high.
– The noise of this HDD is high.

We thus define an evaluative expression as a tuple of a subject, an attribute,
and an evaluative word (in the above example, ‘HDD’, ‘capacity’/‘noise’, and
‘high’).

A good way to automatically acquire evaluative expressions is to first ex-
tract candidate expressions from a collection of documents and to automatically
classify them as positive (favorable), negative (unfavorable), or neutral (non-
evaluative). Therefore, we study classifying candidate evaluative expressions in
documents into the three classes.

Much work has been done to automatically label a piece of text according to
its positive or negative polarity, as detailed in the next section. Several previous
papers have addressed the task by building classifiers that rely exclusively upon
labeled examples [1, 2]. By training classifiers from labeled data, one can apply
familiar and powerful machine learning techniques such as SVM (Support Vector
Machines) [3] and the naive Bayes classifier. However, in practice, obtaining
enough labeled examples to train the classifiers accurately may be difficult.

A contrasting approach relies upon only unlabeled data. This makes using
a large corpus possible. However, a drawback to such an approach is its low
accuracy when used on actual data.

In the area of machine learning, using labeled and unlabeled examples to-
gether has often been found effective [4]. In this paper, therefore, we explore the
use of bootstrapping methods that allow evaluative classifiers to be trained on a
collection of unlabeled texts. Using labeled examples as training data, we apply
a supervised learning algorithm to automatically train the classifier. The trained
classifier can be then used to automatically classify evaluative expressions into
polarity categories and generate more labeled examples, which in turn increases
the training data, and this entire process can be repeated.

To implement the idea, in this work, we adopted the EM algorithm [5] for the
bootstrapping method and the naive Bayes classifier for the supervised learning
method. Specifically, using various contextual information (detailed in Sec. 4.2)
as features in the classifier trained with small seed training examples, evaluative
expressions and their contextual information are newly identified in unannotated
texts. Trained again with the labeled examples, our classifier identifies more
evaluative expressions in unannotated texts. We adopted the combination of the
EM algorithm and the naive Bayesian method, because Nigam et al. [4] have
already shown that this combination can yield better performance in the text
classification task.

1 Though we use Japanese text data, we illustrate our method with English examples
for better understanding by non-Japanese readers.

504 Y. Suzuki, H. Takamura, and M. Okumura

2 Related Work

The previous work on sentiment classification can be divided into the following
three classes, according to the target unit of text: a word (or expression), a
sentence (or clause), or a full document.

– Word sentiment classification [6, 7, 8, 9]
– Sentence sentiment classification [10, 11]
– Document sentiment classification [1, 12, 2]

From another viewpoint, the work on sentiment classification can be divided
into two different approaches: those that try to learn classifiers directly from the
training corpus (supervised learning method) [1, 2, 10, 11, 12] and those targeting
the acquisition of evaluative lexica in an unsupervised fashion [6, 7, 8, 9].

In the latest studies on document sentiment classification, classifiers based on
machine learning (e.g., [1, 2]) performed better than knowledge-intensive classi-
fiers. One of the main obstacles to producing a sentiment classifier in a supervised
fashion is a lack of training data. Targeting words (expressions) makes obtaining
training data more difficult because the data must be manually annotated with
polarities. Because manually producing annotated data is time consuming, the
amount of available annotated data is relatively small2.

As mentioned in the Introduction, much workhas been done on semi-supervised
learning methods [4, 14, 17]. Since unannotated texts are easy to obtain, the semi-
supervised learning framework can produce a much larger collection of labeled
examples than are currently available in manually created data. Consequently,
we believe that sentiment classification systems can be trained on extremely large
text collections by applying this framework.

We think the work of Riloff and Wiebe [13] is most relevant to ours because
they also used a semi-supervised learning method. Their classifier targeted sen-
tences, they tried to learn extraction patterns for subjective (evaluative) expres-
sions from the training data, These extraction patterns were then used for the
classification. Roughly, their work was the application of a semi-supervised learn-
ing technique to subjective expressions, which is similar to our work. However,
their work concentrated on the classification of sentences as subjective or objec-
tive, while our classification targets evaluative expressions as positive, negative,
or neutral (non-evaluative).

Furthermore, while Riloff and Wiebe used only extracted patterns for subjec-
tive expressions to classify sentences, we use a variety of contextual information
that can be obtained from the sentence to which an evaluative expression belongs.

3 Our Method

We propose to use a semi-supervised learning method for classifying evaluative
expressions (i.e., tuples of a subject, an attribute and an evaluative word) into
2 Targeting full documents is easier, because more training data, in the form of reviews,

can be found on the WWW.

Application of Semi-supervised Learning 505

three classes: positive, negative or neutral3. We suppose that evaluative expres-
sions appear with certain types of context, such as ‘I am really happy, because
the storage capacity is high.’ or ‘Unfortunately, the laptop was too expensive.’
We would like to extract such contexts from labeled examples and then use those
contexts to re-label examples. By iterating this procedure, we would be able to
accurately classify evaluative expressions and simultaneously collect evaluative
words and typical contexts.

In order to achieve this bootstrapping, we used the EM algorithm [5], which
has a theoretical base of likelihood maximization of incomplete data and can
enhance supervised learning methods. We specifically adopted the combina-
tion of the naive Bayes classifiers and the EM algorithm. This combination
has been proven to be effective in the text classification [4]. Another famous
semi-supervised method that has been shown to be effective in text classifi-
cation is co-training [14]. We however could not use co-training in this task,
since we do not have conditionally independent views, which are required for
co-training.

We explain the EM-based method in the following section.

3.1 Evaluative Expression Classification with Naive Bayes
Classifiers

This model has been successfully applied to text categorization and its generative
probability of example x given a category c has the form :

P (x|c, θ) = P (|x|)|x|!
∏

w

P (w|c)N(w,x)

N(w,x)!
, (1)

where P (|x|) denotes the probability that a text of length |x| occurs, N(w,x)
denotes the number of occurrences of w in text x, and θ denotes all the para-
meters of the model. The occurrence of a text is modeled as a set of events, in
which a word is drawn from the whole vocabulary.

In evaluative expression classification, categories c are the positive category,
the negative category and the neutral category. Instances x are represented by
features including evaluative words and their context. A detailed description of
features will be given in Sec. 4.

3.2 Incorporation of Unlabeled Data with the EM Algorithm

The EM algorithm is a method to estimate a model that has the maximal like-
lihood of the data when some variables cannot be observed (these variables are
called latent variables) [5]. Nigam et al. [4] proposed a combination of the naive
Bayes classifiers and the EM algorithm, which we also use as a base for con-
structing a Fisher kernel.

3 Here, ‘evaluative expressions’ are actually candidates of evaluative expressions. Non-
evaluative expressions are classified as neutral.

506 Y. Suzuki, H. Takamura, and M. Okumura

Ignoring the unrelated factors of Eq. (1), we obtain

P (x|c, θ) ∝
∏

w

P (w|c)N(w,x), P (x|θ) ∝
∑

c

P (c)
∏

w

P (w|c)N(w,x). (2)

If we regard c as a latent variable and introduce a Dirichlet distribution as
the prior distribution for the parameters, the Q-function (i.e., the expected log-
likelihood) of this model is defined as :

Q(θ|θ̄) = log(P (θ)) +
∑

x∈D

∑

c

P (c|x, θ̄) log
(

P (c)
∏

w

P (w|c)N(w,x)
)

, (3)

where P (θ) ∝
∏

c(P (c)α−1 ∏
w(P (w|c)α−1)); a Dirichlet distribution. α is a user-

given parameter and D is the set of examples used for model estimation.
Instead of the usual EM algorithm, we use the tempered EM algorithm [15],

and obtain the following EM steps :
E-step:

P (c|x, θ̄) =

(
P (c|θ̄)P (x|c, θ̄)

)β

∑
c

(
P (c|θ̄)P (x|c, θ̄)

)β
, (4)

M-step:

P (c) =
g(α, θ̄, c)∑
c g(α, θ̄, c)

, P (w|c) =
h(α, θ̄, w, c)∑
w h(α, θ̄, w, c)

, (5)

where

g(α, θ̄, c) = (α − 1) +
�

x∈D

P (c|x, θ̄), (6)

h(α, θ̄, w, c) = (α − 1) +
�

x∈D

P (c|x, θ̄)N(w,x). (7)

For labeled example x, Eq. (4) is not used. Instead, P (c|x, θ̄) is set as 1.0 if c is
the category of x, otherwise 0.

As can be seen from Eq. (5), the larger α is, the more uniform the distribution
becomes. In practice, α is treated as a user-given parameter. By decreasing
hyper-parameter β, we can reduce the influence of intermediate classification
results if those results are unreliable.

Too much influence by unlabeled data sometimes deteriorates the model es-
timation. Therefore, we introduce a new hyper-parameter λ (≥ 0.0), which acts
as weight on unlabeled data [4]. In the second term on the right-hand-side of
Eq. (3), unlabeled training examples in D are weighted by λ. We can reduce the
influence of unlabeled data by decreasing the value of λ.

We derived new update rules from this new Q-function. The EM computation
stops if the difference in values of the Q-function is smaller than a threshold.

Application of Semi-supervised Learning 507

3.3 Hyper-Parameter Prediction

Classification results depend largely on two hyper-parameters, specifically λ and
β. We would like to predict good values of λ and β. The simplest methods are
leave-one-out estimation or cross-validation. However, those methods require a
high computational cost, especially when we use an EM-like iterative algorithm.
Therefore, we propose an efficient quasi-leave-one-out estimation method.

Our method evaluates the accuracy for classifying labeled training examples.
For each training example, we add minimal modification to the estimated pa-
rameters (excluding hyper-parameters) so that we can obtain new parameters
Pk(c) and Pk(w|c) that are estimated without using the example. Formally we
use the following parameters for training example xk :

Pk(c) =
g(α, θ̄, c) − P (c|xk, θ̄)∑
c

(
g(α, θ̄, c) − P (c|xk, θ̄)

) , (8)

Pk(w|c) =
h(α, θ̄, w, c) − P (c|xk, θ̄)N(w,xk)∑

w

(
h(α, θ̄, w, c) − P (c|xk, θ̄)N(w,xk)

) . (9)

Thus, by preserving the values of functions g(α, θ̄, c) and h(α, θ̄, w, c), we can
efficiently compute the modified parameters for each labeled training example.
Henceforth, we calculate the quasi-leave-one-out accuracy. We select the hyper-
parameters that yield the best quasi-leave-one-out accuracy. Please notice that
all the labeled training examples are used in EM iterations and therefore this
procedure is not an actual leave-one-out, but a quasi-leave-one-out.

3.4 Fisher Kernel (Fisher Score)

The Fisher kernel [16] is a similarity function, which is actually the dot-product
of two Fisher scores. The Fisher score of an example is obtained by partially
differentiating the log-likelihood of the example with respect to parameters. The
Fisher score indicates approximately how the probability model will change if the
example is added to the training data that is used in the estimation of the model.
That means, the Fisher kernel between two samples will be large, if the influences
of the two samples are similar and large. Takamura and Okumura reported that
the Fisher kernel based on a probability model estimated by the semi-supervised
EM algorithm works well in text categorization [17]. One good thing about the
combination of the Fisher kernel and the EM algorithm is that high-performance
kernel classifiers such as SVMs can be used in a somewhat semi-supervised way.
We constructed the Fisher kernel on the basis of the above EM-estimated model
described above as proposed by Takamura and Okumura [17]. Please refer to
their paper for a detailed explanation.

4 Data Preparation and Features

4.1 Data Preparation

As the data for the experiments, we use real Weblog (blog) data collected by
the system called blogWatcher [18]. From the blog data, we obtained candidate

508 Y. Suzuki, H. Takamura, and M. Okumura

evaluative expressions and contextual information in the sentences to which the
expressions belong, by segmenting HTML documents into sentences and ap-
plying a Japanese syntactic analyzer to the sentences to yield their syntactic
structures. Hereafter, we call a pair of a candidate expression and its contex-
tual information an example. The reason why we adopted blogs as our data
source is that they contain more evaluative expressions, and they are easier to
collect, than the newspaper corpora usually used in NLP research. We used as
the Japanese syntactic analyzer Cabocha4. Sentence boundaries were detected
in a heuristic way.

Then, from the sentences, candidate evaluative expressions, that is, tuples of
subjects, their attributes, and evaluative words, are extracted. We extract can-
didate expressions only in cases where evaluative words are adjectives. For each
adjective, we try to find the nouns for a subject and an attribute. If the nouns
that modify the adjective in the syntactic structure satisfy some restrictions5,
they are extracted as the nouns for the subject and the attribute. The actual
phenomena of evaluations in text are more complicated than these tuples, as was
discussed by Wiebe [20]. However, we believe that this tuple-based definition of
evaluative expressions will give a good approximation of the actual phenomena.

By randomly sampling 200 expressions, we evaluated our method’s effective-
ness for extracting candidate expressions, and found that it yielded an accuracy
of 64%. Therefore, we consider that some percentages of the errors in the ex-
periments was caused by the naiveness of our method of extracting candidate
expressions.

4.2 Contextual Information Used for Classification

In Sec. 3, we explained that we adopted the naive Bayes classifier. In this sub-
section, we describe various types of contextual information that are used as
features in the classifier. Contextual information can be extracted from the sen-
tence to which the corresponding candidate evaluative expression belongs.

We assume that evaluative expressions are accompanied by various kinds of
information that are useful for deciding their polarities. For example, if we al-
ready know that ‘good’ is a positive expression, from a sentence ‘Good, since the
storage capacity of the laptop is high’, we can determine that ‘capacity is high’
is a positive expression. We can conjecture that a causal conjunction tends to
connect expressions in the same polarity. Using the knowledge, if there is a type
of sentence ‘A, since B’, we can determine B’s polarity from A’s, and vice versa.

Thus, in this work we take into account the following contextual information
for an candidate evaluative expression:

1. Candidate evaluative expression itself
2. Exclamation words detected by a part-of-speech tagger
3. Emoticons in the sentence and their emotional categories
4 It is available at http://chasen.org/~taku/software/cabocha.
5 Roughly, the subjects should be concrete nouns, and the attributes should be ab-

stract nouns in our thesaurus [19].

Application of Semi-supervised Learning 509

4. Words that modify the words in the tuples (candidate expressions)
5. Word that is modified by the candidate evaluative word
6. Words that are in the same ‘bunsetsu’ as the candidate evaluative word6

Emoticons can be considered as useful, since smileys tend to cooccur with posi-
tive expressions and sad faces tend to cooccur with negative expressions. Emoti-
cons are automatically extracted from a sentence and classified into the six cate-
gories (happy, sad, angry, surprised, acting, and forced smile), using the method
discussed in the work of Tanaka et al.’s [21].

A negation word ‘not’7 reverses the polarity of an evaluative word just before
it. Therefore, taking into account this characteristic, if a candidate expression
is followed by the negation word, the combination of the expression and the
negation word is treated as a feature. Specifically, ‘not bad’ is treated as ‘bad’
+ odd number of negations, ‘not not bad’ is treated as ‘bad’ + even number of
negations, respectively. This definition of the scope of negation words should be
discussed further in future work. Parsing results will provide us with good clues
for that purpose. We will also have to collect other negation words, though we
just use ‘not’ in this work.

Similarly, if a candidate expression modifies or is modified by any evaluative
expression with a contrastive or adversative conjunction, the polarities of those
expressions are poles apart. Therefore, in these cases, the feature ‘reverse’ is
added to the contextual information.

Consider, for example, a sentence belonging to negative : ‘Phew, the noise
of this HDD is annoyingly high :-(’. In the sentence, we can find a tuple of
subject ‘HDD’, attribute ‘noise’, and evaluative word ‘high’. For the tuple, we
can extract the following contextual information as features: the tuple itself, an
exclamation ‘phew’, a modifying word ‘annoyingly’ and an emoticon ‘:-(’.

4.3 Statistics of the Data

As mentioned in Sec. 4.1, since text data on the web is noisy and our preprocess-
ing module that uses publicly available Japanese morphological and syntactic
analyzers sometimes makes errors, the data for our experiments is rather noisy.
Therefore, we use the following heuristics to filter the examples that may be
considered to contain errors :

– No contextual information can be obtained,
– neither subject nor attribute are extracted,
– the distance between the evaluative word and the subject and/or the at-

tribute is more than 16 bytes8.

Furthermore, since the features that seldom appear are considered to be ineffec-
tive, we only used those features that appeared more than twice. Approximately
6 A ‘bunsetsu’ is a unit in Japanese that consists of a content word (noun, verb,

adjective) and some closed words (postposition, auxiliary verb).
7 In the experiment, a Japanese negation word ‘nai’ is regarded as a negation word

instead of ‘not’, since our dataset is in Japanese.
8 Examples with arge distances often contain errors.

510 Y. Suzuki, H. Takamura, and M. Okumura

2.6 million examples were extracted from a blog collection. We obtained 35,765
examples after the filtering. Although many examples were filtered out, if a good
syntactic parser trained for rather noisy text such as web documents becomes
available in the near future, we would be able to use more examples.

Then, we manually labeled a subset of the examples, to use them as either
training data or as test data for the evaluation. The subset were labeled as
belonging to one of the following classes: neutral (non-evaluative), positive eval-
uation, and negative evaluation. We labeled 1,061 examples, and the proportion
of the labels is as follows: neutral (69; 6.5%), positive (504; 47.5%), and nega-
tive (488; 46.0%). To check the reliability of the annotation, we compared the
annotation results of two annotators. The rate of inter-annotator agreement was
91.5%.

5 Experiments

We use the 1061 labeled examples for evaluation. The number of unlabeled
training examples was 34704.

As an evaluation measure, we used accuracy, which is defined as the number
of the correctly classified examples divided by the total number of the examples.
The baseline accuracy was 47.5%, which is the ratio of the examples belonging
to the positive evaluation class in the 1061 labeled examples.

We conducted experiments for different values of hyper-parameters : 0.0005
to 1.0 for λ and 0.001 to 1.0 for β. We used the hyper-parameter prediction
method introduced in Sec. 3.3. The user-given parameter α for the naive Bayes
classifiers was fixed to 2.0. As for SVM classification, we conducted experiments
with several different values of the soft-margin parameter C, and selected the
value that produced the best accuracy.

5.1 Results

Comparison of methods
Table 1 shows the accuracy values for the various methods. Incorporation of
unlabeled data improves classification accuracy of the naive Bayes classifiers for
this task. The Fisher kernel on the probability model estimated with a semi-
supervised method, which is referred to as SVM+NaiveBayes+EM in the table,
also improves SVM performance.

If the actual best values of β and λ are selected for each fold of cross-
validation, the accuracy reaches 79.5%. Although this is unfair, brushing up
hyper-parameter selection would further improve the method’s accuracy.

Though the actual best values were not selected, the proposed method for
hyper-parameter prediction also worked well.

Influence of labeled training data size
The accuracy values for different sizes of labeled training data are presented in
Figure 1. The values were obtained through 10, 5, 3, 2-fold cross validations
and inverted cross-validations that match up the training/test dataset sizes. In

Application of Semi-supervised Learning 511

Table 1. Accuracy for each method; “NB” corresponds to the naive Bayes classi-
fier, “NB+EM” corresponds to the naive Bayes classifier enhanced with EM, and
“SVM+NB+EM” corresponds to the SVM that uses the Fisher kernel extracted from
NB+EM model

Method Accuracy(%)
Baseline 47.5
NB 76.0
SVM 76.6
NB+EM 77.1
SVM+NB+EM 77.9

 58.0
 60.0
 62.0
 64.0
 66.0
 68.0
 70.0
 72.0
 74.0
 76.0
 78.0

 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y(
%

)

size of labeled data for training

NB
SVM

NB+EM

Fig. 1. Accuracy vs Labeled Training Data Size; “NB” corresponds to the result of
classification with the naive Bayes classifier, and “NB+EM” corresponds to the result
of classification with the naive Bayes classifier enhanced with EM

inverted cross-validations, the smaller of the two split datasets was used for
training. The best values for β and λ were used in this experiment.

This result shows that our semi-supervised EM algorithm boosted accuracy,
regardless of the size of labeled training data. The difference in the accuracy
before and after the EM computation was statistically significant in the sign-
test with a 5% significance-level.

Influence of unlabeled training data size
The accuracy values for different sizes of unlabeled training data are given in
Figure 2. This result shows that even a relatively small sized unlabeled dataset
(e.g., 5000 examples) improved the accuracy value. As this curve shows, although
only approximately 35,000 unlabeled examples are currently available, we can
expect better accuracy for a larger unlabeled training dataset.

Many of the classification errors were caused by errors in dependency analysis
and failure to detect subjects and attributes. The existing dependency parsers
are designed for well-formatted text such as newspaper articles, not for Web

512 Y. Suzuki, H. Takamura, and M. Okumura

 76.4

 76.6

 76.8

 77.0

 77.2

 0 10000 20000 30000

A
cc

ur
ac

y(
%

)

size of unlabeled data

with Predicted Parameters

Fig. 2. Accuracy of NB+EM vs Unlabeled Data Size; note that the range for the y-axis
is different from the previous figure

documents. Improvement in parsing technology would solve this problem. We
currently rely on some heuristics to detect subjects and attributes. We require
more sophisticated detection methods to avoid such errors.

Some errors were related to limitations of the proposed method. For example,
our method still has difficulty dealing with idiomatic expressions or ambiguous
words. We need to extend the method so that combinations of multiple features
(words) are taken into consideration.

In order to qualitatively analyze the features, we extracted the 100 features
that had the largest P (w|positive) before and after EM computation. Compared
with the top 100 features before EM, more contextual features were found after
EM, such as, exclamations, the facemark (emoticon) category happy, a negation
word + ‘but’, therefore + ‘interesting’, therefore + ‘comfortable’.

6 Conclusions

We proposed to use a semi-supervised method for automatically classifying eval-
uative expressions as positive, negative, or neutral. We adopted the EM algo-
rithm and the naive Bayes classifiers together with a method for predicting
hyper-parameters. We also used the Fisher kernel on the model that we esti-
mated with the semi-supervised method. We empirically demonstrated that the
semi-supervised method works well for classifying the evaluative expressions.

References

1. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using
machine learning techniques. EMNLP’02. (2002) 76–86

2. Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: Opinion ex-
traction and semantic classification of product reviews. 12th WWW Conference.
(2003) 519–528

Application of Semi-supervised Learning 513

3. Cristianini, N., and Shawe-Taylor, J.: An Introduction to Support Vector Machines
(and other kernel-based learning methods), Cambridge University Press, (2000)

4. Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Text classification from labeled
and unlabeled documents using EM. Machine Learning 39 (2000) 103–134

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society Series B 39
(1977) 1–38

6. Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of ad-
jectives. 35th ACL. (1997) 174–181

7. Turney, P.D.: Thumbs up? thumbs down? semantic orientation applied to unsu-
pervised classification of reviews. 40th ACL. (2002) 417–424

8. Kamps, J., Marx, M., Mokken, R.J., de Rijke, M.: Using wordnet to measure
semantic orientations of adjectives. 4th LREC. (2004) 1115–1118

9. Kim, S.M., Hovy, E.: Determining the sentiment of opinions. 20th COLING. (2004)
1367–1373

10. Kudo, T., Matsumoto, Y.: A boosting algorithm for classification of semi-
structured text. EMNLP’04. (2004) 301–308

11. Wilson, T., Wiebe, J., Hwa, R.: Just how mad are you? finding strong and weak
opinion clauses. 19th AAAI. (2004)

12. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. 42th ACL. (2004) 271–278

13. Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions.
EMNLP’03. (2003) 105–112

14. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
Proceedings of the Workshop on Computational Learning Theory. (1998) 92–100

15. Hofmann, T., Puzicha, J.: Statistical models for co-occurrence data. Technical Re-
port AIM-1625, Artifical Intelligence Laboratory, Massachusetts Institute of Tech-
nology (1998)

16. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classi-
fiers. NIPS 11. (1998) 487–493

17. Takamura, H., Okumura, M.: A comparative study on the use of labeled and
unlabeled data for large margin classifiers. 1st IJCNLP2004. (2004) 620–625

18. Nanno, T., Fujiki, T., Suzuki, Y., Okumura, M.: Automatically collecting, moni-
toring, and mining japanese weblogs. 13th WWW Conference. (2004) 320–321

19. Ikehara, S., Miyazaki, M., Shirai, S., Yokoo, A., Nakaiwa, H., Ogura, K., Ooyama,
Y., Hayashi, Y.: Goi-Taikei – A Japanese Lexicon. Iwanami Shoten (1997)

20. Wiebe, J.: Instructions for annotating opinions in newspaper articles. Technical
report, University of Pittsburgh Technical Report (TR-02-101) (2002)

21. Tanaka, Y., Takamura, H., Okumura, M.: Extraction and classification of facemarks
with kernel methods. IUI 2005. (2005) 28–34

	Introduction
	Related Work
	Our Method
	Evaluative Expression Classification with Naive Bayes Classifiers
	Incorporation of Unlabeled Data with the EM Algorithm
	Hyper-Parameter Prediction
	Fisher Kernel (Fisher Score)

	Data Preparation and Features
	Data Preparation
	Contextual Information Used for Classification
	Statistics of the Data

	Experiments
	Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

